3.154 \(\int \frac {(a+i a \tan (e+f x))^2}{(d \tan (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=93 \[ \frac {4 \sqrt [4]{-1} a^2 \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{d^{5/2} f}-\frac {4 i a^2}{d^2 f \sqrt {d \tan (e+f x)}}-\frac {2 a^2}{3 d f (d \tan (e+f x))^{3/2}} \]

[Out]

4*(-1)^(1/4)*a^2*arctan((-1)^(3/4)*(d*tan(f*x+e))^(1/2)/d^(1/2))/d^(5/2)/f-4*I*a^2/d^2/f/(d*tan(f*x+e))^(1/2)-
2/3*a^2/d/f/(d*tan(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3542, 3529, 3533, 205} \[ \frac {4 \sqrt [4]{-1} a^2 \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{d^{5/2} f}-\frac {4 i a^2}{d^2 f \sqrt {d \tan (e+f x)}}-\frac {2 a^2}{3 d f (d \tan (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^2/(d*Tan[e + f*x])^(5/2),x]

[Out]

(4*(-1)^(1/4)*a^2*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(d^(5/2)*f) - (2*a^2)/(3*d*f*(d*Tan[e + f
*x])^(3/2)) - ((4*I)*a^2)/(d^2*f*Sqrt[d*Tan[e + f*x]])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3542

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (e+f x))^2}{(d \tan (e+f x))^{5/2}} \, dx &=-\frac {2 a^2}{3 d f (d \tan (e+f x))^{3/2}}+\frac {\int \frac {2 i a^2 d-2 a^2 d \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx}{d^2}\\ &=-\frac {2 a^2}{3 d f (d \tan (e+f x))^{3/2}}-\frac {4 i a^2}{d^2 f \sqrt {d \tan (e+f x)}}+\frac {\int \frac {-2 a^2 d^2-2 i a^2 d^2 \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx}{d^4}\\ &=-\frac {2 a^2}{3 d f (d \tan (e+f x))^{3/2}}-\frac {4 i a^2}{d^2 f \sqrt {d \tan (e+f x)}}+\frac {\left (8 a^4\right ) \operatorname {Subst}\left (\int \frac {1}{-2 a^2 d^3+2 i a^2 d^2 x^2} \, dx,x,\sqrt {d \tan (e+f x)}\right )}{f}\\ &=\frac {4 \sqrt [4]{-1} a^2 \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{d^{5/2} f}-\frac {2 a^2}{3 d f (d \tan (e+f x))^{3/2}}-\frac {4 i a^2}{d^2 f \sqrt {d \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.05, size = 87, normalized size = 0.94 \[ -\frac {2 a^2 \left (\cot (e+f x)-6 i \sqrt {i \tan (e+f x)} \tanh ^{-1}\left (\sqrt {\frac {-1+e^{2 i (e+f x)}}{1+e^{2 i (e+f x)}}}\right )+6 i\right )}{3 d^2 f \sqrt {d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^2/(d*Tan[e + f*x])^(5/2),x]

[Out]

(-2*a^2*(6*I + Cot[e + f*x] - (6*I)*ArcTanh[Sqrt[(-1 + E^((2*I)*(e + f*x)))/(1 + E^((2*I)*(e + f*x)))]]*Sqrt[I
*Tan[e + f*x]]))/(3*d^2*f*Sqrt[d*Tan[e + f*x]])

________________________________________________________________________________________

fricas [B]  time = 0.58, size = 403, normalized size = 4.33 \[ -\frac {3 \, {\left (d^{3} f e^{\left (4 i \, f x + 4 i \, e\right )} - 2 \, d^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + d^{3} f\right )} \sqrt {-\frac {16 i \, a^{4}}{d^{5} f^{2}}} \log \left (\frac {{\left (-4 i \, a^{2} d e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (d^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + d^{3} f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {16 i \, a^{4}}{d^{5} f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{2 \, a^{2}}\right ) - 3 \, {\left (d^{3} f e^{\left (4 i \, f x + 4 i \, e\right )} - 2 \, d^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + d^{3} f\right )} \sqrt {-\frac {16 i \, a^{4}}{d^{5} f^{2}}} \log \left (\frac {{\left (-4 i \, a^{2} d e^{\left (2 i \, f x + 2 i \, e\right )} - {\left (d^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + d^{3} f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {16 i \, a^{4}}{d^{5} f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{2 \, a^{2}}\right ) - 8 \, {\left (7 \, a^{2} e^{\left (4 i \, f x + 4 i \, e\right )} + 2 \, a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} - 5 \, a^{2}\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{12 \, {\left (d^{3} f e^{\left (4 i \, f x + 4 i \, e\right )} - 2 \, d^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + d^{3} f\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^2/(d*tan(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

-1/12*(3*(d^3*f*e^(4*I*f*x + 4*I*e) - 2*d^3*f*e^(2*I*f*x + 2*I*e) + d^3*f)*sqrt(-16*I*a^4/(d^5*f^2))*log(1/2*(
-4*I*a^2*d*e^(2*I*f*x + 2*I*e) + (d^3*f*e^(2*I*f*x + 2*I*e) + d^3*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^
(2*I*f*x + 2*I*e) + 1))*sqrt(-16*I*a^4/(d^5*f^2)))*e^(-2*I*f*x - 2*I*e)/a^2) - 3*(d^3*f*e^(4*I*f*x + 4*I*e) -
2*d^3*f*e^(2*I*f*x + 2*I*e) + d^3*f)*sqrt(-16*I*a^4/(d^5*f^2))*log(1/2*(-4*I*a^2*d*e^(2*I*f*x + 2*I*e) - (d^3*
f*e^(2*I*f*x + 2*I*e) + d^3*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(-16*I*a^4
/(d^5*f^2)))*e^(-2*I*f*x - 2*I*e)/a^2) - 8*(7*a^2*e^(4*I*f*x + 4*I*e) + 2*a^2*e^(2*I*f*x + 2*I*e) - 5*a^2)*sqr
t((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1)))/(d^3*f*e^(4*I*f*x + 4*I*e) - 2*d^3*f*e^(2*I*f*x
 + 2*I*e) + d^3*f)

________________________________________________________________________________________

giac [A]  time = 2.18, size = 117, normalized size = 1.26 \[ -\frac {4 i \, \sqrt {2} a^{2} \arctan \left (\frac {16 \, \sqrt {d^{2}} \sqrt {d \tan \left (f x + e\right )}}{8 i \, \sqrt {2} d^{\frac {3}{2}} + 8 \, \sqrt {2} \sqrt {d^{2}} \sqrt {d}}\right )}{d^{\frac {5}{2}} f {\left (\frac {i \, d}{\sqrt {d^{2}}} + 1\right )}} - \frac {2 \, {\left (6 i \, a^{2} d \tan \left (f x + e\right ) + a^{2} d\right )}}{3 \, \sqrt {d \tan \left (f x + e\right )} d^{3} f \tan \left (f x + e\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^2/(d*tan(f*x+e))^(5/2),x, algorithm="giac")

[Out]

-4*I*sqrt(2)*a^2*arctan(16*sqrt(d^2)*sqrt(d*tan(f*x + e))/(8*I*sqrt(2)*d^(3/2) + 8*sqrt(2)*sqrt(d^2)*sqrt(d)))
/(d^(5/2)*f*(I*d/sqrt(d^2) + 1)) - 2/3*(6*I*a^2*d*tan(f*x + e) + a^2*d)/(sqrt(d*tan(f*x + e))*d^3*f*tan(f*x +
e))

________________________________________________________________________________________

maple [B]  time = 0.17, size = 393, normalized size = 4.23 \[ -\frac {a^{2} \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )}{2 f \,d^{3}}-\frac {a^{2} \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{f \,d^{3}}+\frac {a^{2} \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{f \,d^{3}}-\frac {i a^{2} \sqrt {2}\, \ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )}{2 f \,d^{2} \left (d^{2}\right )^{\frac {1}{4}}}-\frac {i a^{2} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{f \,d^{2} \left (d^{2}\right )^{\frac {1}{4}}}+\frac {i a^{2} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{f \,d^{2} \left (d^{2}\right )^{\frac {1}{4}}}-\frac {2 a^{2}}{3 d f \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}-\frac {4 i a^{2}}{d^{2} f \sqrt {d \tan \left (f x +e \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^2/(d*tan(f*x+e))^(5/2),x)

[Out]

-1/2/f*a^2/d^3*(d^2)^(1/4)*2^(1/2)*ln((d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*t
an(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))-1/f*a^2/d^3*(d^2)^(1/4)*2^(1/2)*arctan(2^(1/2
)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)+1/f*a^2/d^3*(d^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e
))^(1/2)+1)-1/2*I/f*a^2/d^2/(d^2)^(1/4)*2^(1/2)*ln((d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2
)^(1/2))/(d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))-I/f*a^2/d^2/(d^2)^(1/4)*2^(1/2)*
arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)+I/f*a^2/d^2/(d^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(d^2)^(1/4)
*(d*tan(f*x+e))^(1/2)+1)-2/3*a^2/d/f/(d*tan(f*x+e))^(3/2)-4*I*a^2/d^2/f/(d*tan(f*x+e))^(1/2)

________________________________________________________________________________________

maxima [B]  time = 0.83, size = 198, normalized size = 2.13 \[ \frac {\frac {3 \, a^{2} {\left (-\frac {\left (2 i + 2\right ) \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\left (2 i + 2\right ) \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\left (i - 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) + \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}} - \frac {\left (i - 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) - \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}}\right )}}{d} - \frac {4 \, {\left (6 i \, a^{2} d \tan \left (f x + e\right ) + a^{2} d\right )}}{\left (d \tan \left (f x + e\right )\right )^{\frac {3}{2}} d}}{6 \, d f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^2/(d*tan(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

1/6*(3*a^2*(-(2*I + 2)*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d)
- (2*I + 2)*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) + (I - 1)*
sqrt(2)*log(d*tan(f*x + e) + sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) + d)/sqrt(d) - (I - 1)*sqrt(2)*log(d*tan(f*x
 + e) - sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) + d)/sqrt(d))/d - 4*(6*I*a^2*d*tan(f*x + e) + a^2*d)/((d*tan(f*x
+ e))^(3/2)*d))/(d*f)

________________________________________________________________________________________

mupad [B]  time = 4.38, size = 80, normalized size = 0.86 \[ -\frac {\frac {2\,a^2}{3\,d\,f}+\frac {a^2\,\mathrm {tan}\left (e+f\,x\right )\,4{}\mathrm {i}}{d\,f}}{{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}}-\frac {\sqrt {4{}\mathrm {i}}\,a^2\,\mathrm {atan}\left (\frac {\sqrt {4{}\mathrm {i}}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{2\,\sqrt {-d}}\right )\,2{}\mathrm {i}}{{\left (-d\right )}^{5/2}\,f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)^2/(d*tan(e + f*x))^(5/2),x)

[Out]

- ((2*a^2)/(3*d*f) + (a^2*tan(e + f*x)*4i)/(d*f))/(d*tan(e + f*x))^(3/2) - (4i^(1/2)*a^2*atan((4i^(1/2)*(d*tan
(e + f*x))^(1/2))/(2*(-d)^(1/2)))*2i)/((-d)^(5/2)*f)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - a^{2} \left (\int \left (- \frac {1}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}}\right )\, dx + \int \frac {\tan ^{2}{\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx + \int \left (- \frac {2 i \tan {\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}}\right )\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**2/(d*tan(f*x+e))**(5/2),x)

[Out]

-a**2*(Integral(-1/(d*tan(e + f*x))**(5/2), x) + Integral(tan(e + f*x)**2/(d*tan(e + f*x))**(5/2), x) + Integr
al(-2*I*tan(e + f*x)/(d*tan(e + f*x))**(5/2), x))

________________________________________________________________________________________